
3 a.

3 b.

3. WRITTEN RESPONSES

3.a.i. 
The overall purpose of the hospital reception program is to innovate the reception service of hospitals, which is usually 
done manually, by allowing it to be done by using a computing device.

3.a.ii. 
The functionality of the program is displaying a greeting phrase, “Welcome! ” + name to a patient that has visited the 
hospital before and has their name on the patientList, a list containing the names of patients who visited the hospital 
before, or displaying that it cannot find the patient’s information if the patient’s name is not stored on the patientList. 
Finally, the program adds the name of the patient that first visited the hospital to the patientList.

3.a.iii.
The program’s inputs are the texts that answer whether the patient has visited the hospital before and the name of the 
patient. The output of the program is a text that displays greetings, the patient information could not be found, or the 
patient information is newly added to the program.

3.b.i. 

3.b.ii. 

3.b.iii.
The name of the list is patientList.

3.b.iv. 
The data contained in the patientList represent the names of the patients that visited the hospital before. The patientList 
stores the names of the patients who visited the hospital before as string data. 

3.b.v. 
The patientList
 manages complexity in the program code by allowing the names of patients to be stored as strings in one set of data. 
Without the 
patientList
, the program would be written to store every single name of patients using different string variables. If the program works 
in that way, it would also be difficult to append the names of new patients to the program because new variables should 
be declared to store the names of new patients. Furthermore, not using a list when storing the names of patients would 
cause difficulty in the name searching functionality of the program because it is hard to search for the name that matches 
the text input using iteration when the names are in separate variables. Therefore, the 
patientList
 manages the program's complexity by allowing data to be stored simply and making the searching functionality work 
correctly. 



3 c.
3.c.i. 

3.c.ii. 

3.c.iii.
If the answer to the question asking whether they have previously visited the hospital is not “Yes”, the name of the patient 
types after that is added to the list. When the patient enters “Yes” to the question asking whether they have previously 
visited the hospital and types their name, the procedure 
search takes the string name, integer patientNumber, and patientList as parameters and compares the string variable 
name with each of the data stored in the patientList. It displays “Welcome! ” + name if the name is found in the 
patientList
, but displays, “Sorry, but we cannot find your information.” if it is not found. The procedure contributes to the program's 
overall functionality by comparing the input data with every element in the list and displaying the result of whether the 
patient’s name is included in the 
patientList or not.

3.c.iv. 
The procedure search takes the string input called name, which represents the name of the patient, the integer 
patientNumber, which represents the number of patients, and the patientList
 containing the names of patients as its parameters. It initially sets the boolean named exist
 to false. Then, using iteration (for statement), the program checks every index of the patientList
 and finds out whether there is an element in the patientList that matches the parameter name. If there is, the procedure 
search sets the boolean named exist to true and displays “Welcome! ” + name
. If there isn’t a matching element, the boolean named exist
 remains false and the procedure displays “Sorry, but we cannot find your information.”



3 d.
3.d.i. 
First call:
In the first call, the procedure search
 was tested with the case that the patient answered they had previously visited the hospital and input a name that already
existed in the 
patientList. The procedure executes the first if statement that sets the boolean exist to true and displays “Welcome! ” + 
name under the condition when the string equal to the text name input is found on the patientList.

Second call:
In the second call, the procedure search
 was tested with the case that the patient answered they had previously visited the hospital but input a name that is not 
in the 
patientList. The procedure executes the second if statement that displays “Sorry, but we cannot find your information.” 
under the condition of when the boolean exist remains false.

3 d.ii. 
Condition(s) tested by first call:
The condition tested by the first call of the procedure search is that there is a string in one of the indexes of the 
patientList that is equal to the text name input. 

Condition(s) tested by second call:
The condition tested by the second call of the procedure search is that the boolean named exist
 remains false, which means that there is no name on the patientList that is equal to the text name input. 

3.d.iii.
Results of the first call:
The result of the first call is that the boolean named exist changes to true, and the program displays “Welcome! ” + name
 as a text output. 

Results of the second call:
The result of the second call is that the program displays the phrase "Sorry, but we cannot find your information." as a 
text output. 


	3. WRITTEN RESPONSES

